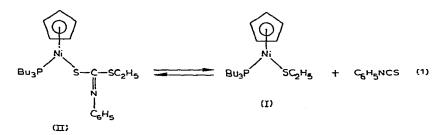
Preliminary communication

π -Cyclopentadienyls of nickel(II) X. Phenylisothiocyanate insertion into π -C₅ H₅ NiPBu₃ SC₂ H₅

FUMIE SATO and MASAO SATO

Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo (Japan) (Received October 16th, 1972)


SUMMARY

 $[\pi$ -C₅H₅Ni(PBu₃)(SC₂H₅)] reacts with PhNCS to give $[\pi$ -C₅H₅Ni(PBu₃) {SC(=NPh)SC₂H₅}]; the product reversibly dissociates to the reactants in solution.

It has been shown previously that π -C₅H₅NiPBu₃SR complexes readily undergo carbon disulfide insertion to produce the stable (alkyltrithiocarbonato)nickel complex¹. We describe below phenylisothiocyanate insertion into the complex π -C₅H₅NiPBu₃SC₂H₅, and some properties of the product.

After standing a few hours at room temperature, a mixture of π -C₅H₅NiPBu₃SC₂H₅ (I) and an excess of C₆H₅NCS in pentane gave reddish brown crystals in quantitative yield; these had the molecular formula π -C₅H₅NiPBu₃SC₂H₅ · C₆H₅NCS (II), m.p. 70.5-71.5° (Found: C, 59.25; H, 7.98; N, 2.71. C₂₆H₄₂NNiPS₂ calcd.: C, 59.84; H, 8.05; N, 2.68%). The product (II) appeared to be an S- rather than an N-dithiocarbamate-nickel complex, since the IR spectrum of the solid showed no band which might be assigned to a C=S stretching mode, but a strong band was observed at 1530 cm⁻¹, and is assigned to ν (C=N)².

Cryoscopy in benzene, and the IR spectrum and NMR spectrum of (II) showed that the complex (II) dissociated in organic solvents such as benzene, hexane and acetone according to Eq.1. The apparent molecular weight of (II) (291), in benzene is lower than the calculated values (522). The IR spectrum of complex (II) in organic solvents showed a band at near 2100 cm⁻¹ characteristic of -N=C=S str. which was not present in solid (II). The proton NMR spectrum of (II) in C₆D₆ showed, in addition to the peaks which were assigned to the phenyl and PBu₃ protons, a quartet at τ 6.86 due to the methylene protons of S-C₂H₅ in (II), a quartet at τ 7.88 due to the methylene protons of S-C₂H₅ in (I)³, J. Organometal Chem., 46 (1972)

and a singlet at τ 4.82 due to the π -cyclopentadienyl protons of (I) and (II) (Table 1). It is interesting that the chemical shifts of the π -cyclopentadienyl protons of (I) and (II) in C_6D_6 were identical, but in CD_3COCD_3 they had different shifts, and appeared at τ 4.80 and 4.72, respectively.

TABLE 1

THE PROTON NMR SPECTRAL DATA

Solvent	Chemical shift (internal TMS)			
	$\tau (C_6 H_5)$	$\tau(\pi - C_5 H_5)$	'τ(S−CH ₃ −C≤)	τ (PBu ₃) + τ (S- $\dot{\zeta}$ -CH ₃)
C ₆ D ₆	2.6–3.5 (m, 5H) ^a	4.82 (s, 5H)	6.86 ^b (q, 0.9H) 7.88 ^c (q, 1.1H)	8.2–9.4 (3OH)
CD ₅ COCD ₃	2.4–3.3 (m, 5H)	4.72 ^b (s, 3H) 4.80 ^c (s, 2H)	7.08 ^b (q, 1.2H) 8.14 c,d	7.8 ~ 9.2 ^d

 a m, multiplet; s, singlet; q, quartet. b Assigned to complex II. c Assigned to complex I. d The signals from the methylene protons were overlapped by signals from the solvent and PBu₃ protons.

REFERENCES

1 F. Sato, K. Iida and M. Sato, J. Organometal. Chem., 39 (1972) 197.

2 M.F. Lappert and A.R. Sanger, J. Chem. Soc. A, (1971) 1314.

3 M. Sato and T. Yoshida, J. Organometal, Chem., 39 (1972) 389.

J. Organometal. Chem., 46 (1972)